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Adaptation of sea turtles to climate warming: Will phenological
responses be sufficient to counteract changes in reproductive
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FUENTES ET AL.

mitigate impacts from increases in ambient temperatures (from 1.5 to 3°C in air tem-
peratures and from 1.4 to 2.3°C in sea surface temperatures by 2100 at our sites)
on four species of sea turtles, under a “middle of the road” scenario (SSP2-4.5). Sand
temperatures at sea turtle nesting sites are projected to increase from 0.58 to 4.17°C
by 2100 and expected shifts in nesting of 26-43 days earlier will not be sufficient to
maintain current incubation temperatures at 7 (29%) of our sites, hatching success
rates at 10 (42%) of our sites, with current trends in hatchling sex ratio being able
to be maintained at half of the sites. We also calculated the phenological shifts that
would be required (both backward for an earlier shift in nesting and forward for a later
shift) to keep up with present-day incubation temperatures, hatching success rates,
and sex ratios. The required shifts backward in nesting for incubation temperatures
ranged from -20 to -191 days, whereas the required shifts forward ranged from +54
to +180days. However, for half of the sites, no matter the shift the median incuba-
tion temperature will always be warmer than the 75th percentile of current ranges.
Given that phenological shifts will not be able to ameliorate predicted changes in
temperature, hatching success and sex ratio at most sites, turtles may need to use
other adaptive responses and/or there is the need to enhance sea turtle resilience to

climate warming.
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1 | INTRODUCTION

The world's climate is changing at an unprecedented rate (Loarie
et al., 2009). As a response, species, from polar terrestrial to tropi-
cal marine environments, have started to alter their phenology (e.g.,
timings of cyclical or seasonal biological events), shift their geo-
graphic distribution, and modify their trophic interactions (Dalleau
et al., 2012; Parmesan & Yohe, 2003; Walther et al., 2002). Species'
responses to climate change can occur through at least three con-
trasting but non-exclusive mechanisms: (1) range shifts, (2) pheno-
typic plasticity, and (3) microevolution via natural selection (Fuentes
et al., 2020; Hulin et al., 2009; Waldvogel et al., 2020).

Range shifts might be observed by sea turtles responding to
changes in climate by shifting their range to more climatically suitable
areas (Abella Perez et al., 2016; Mainwaring et al., 2017). It is crucial
that these areas provide the environment necessary for colonization
and are conducive to egg incubation (Fuentes et al., 2020; Pike, 2013).
However, it has been indicated that areas with climatically suitable en-
vironments might be impacted by other stressors (e.g., sea level rise,
coastal development), which might hinder the potential adaptive capac-
ity of sea turtles (Fuentes et al., 2020). Phenotypic plasticity allows in-
dividuals to cope with environmental changes and relates to the ability

adaptive response, climate change, ectotherms, marine turtles, phenology, reproductive

of individuals to respond by modifying their behavior, morphology, or
physiology in response to an altered environment (Hughes, 2000; Hulin
et al., 2009; Waldvogel et al., 2020). Microevolution refers to adapta-
tion occurring because of genetic change in response to natural selec-
tion (Lane et al., 2018). Phenotypic plasticity provides the potential for
organisms to respond rapidly and effectively to environmental changes
and thereby cope with short-term environmental change (Charmantier
et al., 2008; Przybylo et al., 2000; Réale et al., 2003). However, phe-
notypic plasticity alone may not be sufficient to offset against pro-
jected impacts from climate change (Gienapp et al., 2008; Schwanz &
Janzen, 2008). Microevolution, on the other hand, is thought essential
for the persistence of populations faced with long-term directional
changes in the environment. However, the ability of microevolutionary
responses to counteract the impacts of climate change is unknown, be-
cause rates of climate change could outpace potential responses (Hulin
et al., 2009; Morgan et al., 2020; Visser, 2008) although see Tedeschi
et al. (2015).

It is unclear whether potential adaptive responses by turtles
will be sufficient to counteract projected impacts from climate
change (Monsinjon, Lopez-Mendilaharsu, et al., 2019; Moran &
Alexander, 2014; Morjan, 2003). For example, sea turtles have per-
sisted through large changes in climate during the millions of years that
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they have existed, demonstrating a biological capacity to adapt (Maurer
et al., 2021; Mitchell & Janzen, 2010; Rage, 1998). Nevertheless, there
is growing concern over the potential impacts that projected tem-
perature increases might have on sea turtles (Patricio et al.,, 2021).
Temperature plays a central role in sea turtle embryonic development,
hatching success, hatchling sex ratios (Hays et al., 2017; Standora &
Spotila, 1985), hatchling morphology, energy stores, and locomotor
performance (Booth, 2017). Sea turtle eggs only successfully incubate
within a narrow thermal range (25 and ~35°C), with incubation above
the thermal threshold resulting in hatchlings with higher morpholog-
ical abnormalities and lower hatching success (Howard et al., 2014;
Miller, 1985). Furthermore, sea turtles have temperature-dependent
sex determination, a process by which the incubation temperature de-
termines the sex of hatchlings (Mrosovsky, 1980). The pivotal tempera-
ture (PT ~28.9-30.2°C for the species studied here, Figure S1), where
a 1:1 sex ratio is produced, is centered within a transitional range of
temperatures (~1.6-5°C, Figure S1), that generally produces mixed sex
ratios. Values above the PT will produce mainly female hatchlings while
values below produce mainly males (Mrosovsky, 1980).

Thus, projected increases in temperature may cause feminiza-
tion of sea turtle populations and decrease reproductive success
(Patricio et al., 2021). Many studies have suggested that sea tur-
tles may adapt to increases in temperature by altering their nest-
ing behavior, through changes in their nesting distribution, and
nest-site choice (Kamel & Mrosovsky, 2006; Morjan, 2003), and
by shifting nesting to cooler months (Almpanidou et al., 2018;
Dalleau et al., 2012; Pike et al., 2006; Weishampel et al., 2004).
Earlier nesting has already occurred in some turtle populations as
a response to climatic warming (e.g., Pike et al., 2006; Weishampel
et al., 2004). However, it is unclear whether phenological and be-
havioral shifts can sufficiently buffer the effects of rising tempera-
tures (Almpanidou et al., 2018; Laloé & Hays, 2023; Monsinjon,
Lopez-Mendilaharsu, et al.,, 2019). Although two other studies
(Almpanidou et al., 2018; Laloé & Hays, 2023) have explored
whether earlier shifts in phenology can preserve the present-day
thermal niche of sea turtle nesting environment in a changing
climate, only one other study (Monsinjon, Lopez-Mendilaharsu,
et al., 2019) explores the implications of phenological responses
to sea turtle reproductive output (hatching success and primary
sex ratio), of which they focused on loggerhead turtles (Caretta
caretta). Given that different sea turtle species have different spa-
tial-temporal nesting patterns, we expand from this study focused
on loggerhead turtles to assess the extent to which phenological
shifts by four different species of sea turtles could mitigate in-
creases in temperature at different sea turtle nesting sites glob-
ally to maintain the reproductive output of affected populations.
Furthermore, to build on previous work, we explore whether nest-
ing populations could benefit from both an earlier and a later phe-
nological shift. To do so, we calculated the shift (backward and
forward, respectively) that would be required for incubation tem-
perature, hatching success, and sex ratio to stay similar to current
ranges. In doing so we are the first study to date to investigate the
implications of a later nesting by sea turtles.

ST i v

2 | MATERIALS AND METHODS
2.1 | Modeling framework

We considered the capacity of green (Chelonia mydas, Cm), log-
gerhead (Caretta caretta, Cc), hawksbill (Eretmochelys imbricata, Ei),
and olive ridley (Lepidochelys olivacea, Lo) turtles to counteract the
impacts of climate change on incubation temperature, hatching
success, and sex ratio by temporally shifting their nesting season.
We included 24 nesting sites globally which are part of 11 differ-
ent regional management units (RMUs as per Wallace et al., 2010;
Table S1). To predict overall hatching success and sex ratios at our
study sites (scaling up spatially and temporally across levels: from
the nest to the whole rookery; across the entire nesting period), we
followed a method developed by Monsinjon, Wyneken, et al. (2019)
for the loggerhead sea turtle (Figure 1). We calculated a seasonal
indicator of mean incubation temperature (average weighted by
the number of nests), hatching success (average survival proportion
weighted by the number of nests), and sex ratio (average male or
female proportion weighted by the hatching success and the number
of nests). The approach consisted of six steps: (1) reconstruction of
current (1979-2020) nest temperature at nesting sites, (2) modeling
embryonic growth in clutches from the same RMU, (3) inferring ther-
mal tolerances at the species level, (4) developing sex ratio thermal
reaction norms at the species level, (5) describing nesting seasonal-
ity for each nesting site, and (6) forecasting nest temperature, hatch-
ing success and sex ratio under a scenario of climate warming, while
considering a potential temperature-driven shift in nesting phenol-
ogy (Figure 1). We give details on each step below and highlight any
adjustments or improvements applied in the present study in rela-
tion to the Monsinjon, Wyneken, et al. (2019) analysis.

2.2 | Current clutch temperature

Based on a correlative approach with sea surface temperature and
air temperature (Bentley et al., 2020; Fuentes et al., 2009; Girondot
& Kaska, 2015; Laloé et al., 2020; Monsinjon, Jribi, et al., 2017), we
reconstructed the daily nest temperature at each of our study sites
between January 1979 and December 2020. For this, we obtained sea
and air temperatures from the European Centre for Medium-Range
Weather Forecasts (ECMWEF) climate reanalysis v5 (ERA5; hourly time
series at 0.25° x 0.25° spatial resolution; Hersbach et al., 2020) at each
site and fitted a linear mixed-effect model to our in situ daily nest tem-
peratures using the R package “nlme” (Pinheiro et al., 2022) with nest
identity as random effect and an ARMA correlation structure. To es-
timate metabolic heating (i.e., the increase in temperature within the
egg chamber as compared to the surrounding incubation substratum),
we used the proportion of incubation time as an additional predictor.
This produces a proxy for metabolic heating specific to each nesting
site (Monsinjon, Guillon, et al. (2017) for details). The values obtained
(i.e., the increase in temperature at the end of incubation, Table S1)
ranged from 0.46 to 5.55°C, which is similar to those presented by
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FIGURE 1 Modeling framework to predict overall hatching success and sex ratio at our study sites (scaling up from the day-nest level to
the season-beach level), modified from Monsinjon, Wyneken, et al. (2019). * is to indicate seasonal index of incubtaion temperature, hatching

success or sex ratio.

(Gammon et al., 2020). Based on the lowest Akaike information crite-
rion (Burnham & Anderson, 2002), we selected the best model from a
set of candidates using a daily lag with air or sea temperature varying
from O (i.e., synchronous relationship with nest temperature) to 5 days
(i.e., lagged relationship with nest temperature at day+5). Following
(Monsinjon, Guillon, et al., 2017), we used the standard deviation
of the coefficients of the random effect as a proxy of nest thermal
heterogeneity at the nesting beach scale (see Monsinjon, Wyneken,
et al., 2019) for its application in sea turtles. Finally, we estimated the
coefficients of each predictor (sea surface temperature, air tempera-
ture, and proportion of incubation time) for the selected model within
a standard generalized linear model framework using a Gaussian link
function. To reconstruct diel thermal fluctuation, we computed daily
maximum and minimum temperatures as follows: average daily tem-
perature +average daily amplitude (as defined by daily maxima - daily
minima). We set daily maximum and minimum temperatures at the
average time of day (decimal hours) when they occurred (mean daily
amplitude and average time of day for minima and maxima are given
in Table S1 along with the other parameters used to reconstruct nest

temperatures).

2.3 | Embryonic development

To predict the progression of embryo size during incubation
and hence estimate the dates of each embryonic stage along
our nest temperature time series, we used two equations de-
scribing, respectively, the thermal reaction norm of embryonic

growth rate and a growth function of incubation time (Fuentes
et al.,, 2017; Girondot et al., 2018; Girondot & Kaska, 2014;
Monsinjon, Jribi, et al., 2017) using the R package “embryogrowth”
(Girondot, 2022a). This method requires nest temperature data
and measurements of the straight carapace length of hatchlings.
Based on our field data (Table S1) and assuming a Gompertz model
for embryo growth, we estimated the four parameters of the model
(Schoolfield et al., 1981) using maximum likelihood (Girondot &
Kaska, 2014). Here we identified the posterior distributions to
compute confidence intervals using Bayesian Markov chain Monte
Carlo (MCMC) with the Metropolis-Hasting algorithm (Chib &
Greenberg, 1995) on 10,000 iterations. We used the values esti-
mated with maximum likelihood as initial parameters and assumed
a uniform distribution for priors. To ensure the acceptance rate
across iterations was optimal, we followed the adaptive proposal
distribution procedure (Rosenthal, 2011) implemented in the R
package “HelpersMG” (Girondot, 2022b). Once calibrated, we ran
the embryonic growth model along reconstructed nest tempera-
tures to estimate, for any given day a clutch would be laid, the du-
ration of incubation (i.e., when embryo size reaches hatchling size)
and the position of the thermosensitive period of development for
sex determination within that nest (Girondot et al., 2018).

2.4 | Thermal tolerance and hatching success

We used the flexible-logistic model described in Abreu-Grobois
et al. ( 2020) and implemented in the R package “embryogrowth”
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(Girondot, 2022a) to describe the transition from maximal to 0%
survival at temperatures where embryos fail to develop. This
model allows for asymmetrical transitions in survival propor-
tion at lethal temperatures (i.e., around 25°C and 33-35°C, with
variation among species, Howard et al., 2014). We estimated the
parameters of the thermal tolerance curve specifically for each
species using literature data on hatching success measured at sev-
eral controlled temperatures (i.e., held constant) during incubation
experiments (Table S2). We first estimated the parameters using
maximum likelihood and then we identified the posterior distribu-
tions to compute confidence intervals following the procedure de-
scribed above (i.e., Bayesian MCMC with the Metropolis-Hasting
algorithm and the adaptive proposal distribution) on 100,000
iterations assuming a uniform distribution for priors. Following
Monsinjon, Wyneken, et al. (2019) and Laloé et al. (2020), we cal-
culated hatching success from the mean temperature during the
whole incubation after applying a correction parameter to control
for deviations unrelated to temperature (Monsinjon, Wyneken,
et al., 2019). The correction parameter was estimated by compar-
ing in situ hatching success data (using data from the literature
and the present study: see Table S3) with predicted ones (i.e.,
from mean temperature + correction factor) and searching for the
value that minimizes the dispersion of residuals. As previous stud-
ies used +0.32°C for loggerhead turtles (Monsinjon, Wyneken,
et al., 2019) and +0.82°C for green turtles (Laloé et al., 2020), we

restricted our search between -1°C and +1°C.

2.5 | Sexratio thermal reaction norm

To predict sex ratio (i.e., the proportion of males or females) at
the scale of a clutch, we estimated the thermal reaction norm of
sex ratio (i.e., the relationship between male proportion and tem-
perature when held constant during incubation) using the logistic
equation described in Monsinjon et al. (2022) and implemented in
the R package “embryogrowth” (Girondot, 2022a). We estimated
the equation parameters specifically for each species using litera-
ture data on sex ratio measured at several controlled temperatures
(i.e., held constant) during incubation experiments (Table S4). We
first estimated the parameters using maximum likelihood and
then identified the posterior distribution of the parameters using
Bayesian MCMC with the Metropolis-Hasting algorithm and the
adaptive proposal distribution on 100,000 iterations assuming
a Gaussian distribution for priors. We used a Gaussian distribu-
tion here since the values for the parameters do not vary much
among sea turtle species. From our embryonic growth model, we
estimated the position of the thermosensitive period of develop-
ment (BeginTSP to EndTSP in the equation below), using the values
estimated by Monsinjon et al. (2022) for sex determination during
incubation and extracted temperature traces and increments of
embryo size within this period (Girondot et al., 2018). As pointed
out in previous research (Fuentes et al., 2017; Georges et al., 1994,
2005), the simple mean temperature is not an appropriate proxy

ST w1 L

for sex ratio. Therefore, we calculated a growth-weighted aver-
age temperature (i.e., a constant temperature equivalent or CTE)
and, following a recent improvement (Monsinjon et al., 2022), we
added the level of sexualization (initially estimated for loggerhead
turtles nesting in Florida, USA) to the weighting scheme. We cal-
culated the growth-weighted sexualization-weighted average

temperature (CTE) as follows:

zf:gl;‘;m (T¢ x Atime x Growth x TRNS(T;) x S — TSP(t))

Y aetrsp (Atime x Growth x TRNS(T,) x S — TSP(t))

CTE =

where T, is the temperature at time t, Atime is the time difference be-
tween two successive records, Growth is the size increment between
two successive records, and TRNS(Tt) X S — TSP(t)is the level of sexu-
alization defined by the thermal reaction norm of sexualization (TRNS)
at T, and the sensitivity of sexualization during the TSP (S — TSP) at
time t.

2.6 | Nesting dynamics

To scale up incubation temperatures, hatching successes, and sex
ratios at the scale of a clutch to the whole nesting season based
on daily nest numbers, we estimated the overall nesting dynamics
(i.e., the progression of nest number throughout any season) at our
study sites (see Figure S2). To do this, we used the model described
in Girondot (2010, 2017) available in the R package “phenology”
(Girondot, 2020). This model uses a negative-binomial distribution
for each ordinal day and has seven parameters that define nesting
seasonality: (1) the date of the peak of nesting, (2) the average num-
ber of nests (or tracks) at the peak of the season, (3) its duration, (4)
the minimum number of nests (or tracks) in periods out of the nest-
ing season, (5) the duration from the beginning of the season to the
peak and (6) from the peak to the end (the beginning and the end
being estimated via the parameter 4), and (7) a negative-binomial
parameter that controls for the dispersion around the mean. These
parameters are components of a model described in Girondot (2010,
2017). This model uses all available nests (or tracks) to estimate the
date of the beginning and the end of nesting seasons (via the param-
eters 1, 5, and 6, described above), which is more appropriate than
using the first and the last nesting attempts that could be sporadic
events not representative of the underlying nesting dynamics (e.g.,
if nesting occurs all year round). Here, we assumed that the maxi-
mum did not flatten out around the peak, which is consistent with
the bell-shaped distribution of nest count data typically observed at
our study sites. To minimize constraints on the parameters that con-
trol for the shape of nesting seasonality (i.e., when nesting begins,
peaks, and ends), we estimated the maximum of each nesting season
first while holding the “shape” parameters constant. Then we fixed
the maximum to its estimated value, and we estimated the “shape”
parameters in a second round. Finally, we standardized the overall
nesting dynamics (number of nests or tracks per day) between 0
and 1 so that all nesting sites are treated the same way, assuming a
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constant nesting success throughout the season. We treated the site
Tetiaroa Atoll (French Polynesia) with a different set of equations
(described in Laloé et al., 2020) derived from the aforementioned
model (Girondot, 2010, 2017) because green turtles can attempt to
nest on each of the 12 islets (see Laloé et al., 2020) which are not
monitored with the same effort. Given the varying nesting propor-
tion and monitoring effort at this site we estimated the maximum for
each islet and each season to determine the overall nesting dynam-
ics of this site. For computation efficiency purposes, we assumed the
minimum number of nests was always zero during the low season,
except for olive ridleys nesting at Las Cabras (Mexico). In this case,
we also estimated season-specific minima because a non-negligi-
ble number of turtles came to nest sporadically all year round. We
first estimated the parameters using maximum likelihood and then
their distribution was estimated using Bayesian MCMC with the
Metropolis-Hasting algorithm and the adaptive proposal distribu-
tion on 10,000 iterations assuming a Gaussian distribution for priors.

2.7 | Climate and phenology scenarios

We considered two climate scenarios: current (hindcasting between
2007 and 2020) and the IPCC's SSP2-4.5 “Middle of the road” sce-
nario (IPCC, 2021); forecasting between 2059 and 2100. We pre-
dicted incubation temperature, hatching success, and sex ratio within
the last two decades to stay representative of current day conditions
and chose from 2007 onward as this period contains >97.5% of our
hatching success field data (Table S5). We extracted mean tempera-
ture and sea surface temperature anomalies from the web interface
(https:/interactive-atlas.ipcc.ch/regional-information) of the IPCC's
Atlas (Gutiérrez et al., 2021) with the following settings: Region
set=WGI reference-regions (or Small islands for the Tetiaroa Atoll,
French Polynesia), Uncertainty = Advanced, Season=Annual, Baseline
period=1981-2010, and Future period=2081-2100. For both vari-
ables and within each region, we extracted the median change in
temperature (Table S1). To forecast daily minimum and maximum nest
temperatures between 2059 and 2100, we added those anomalies
to our 1979-2020 baseline time series of air and sea surface tem-
perature and applied the model calibrated on contemporary data. We
then computed daily hatching success and sex ratio along forecasted
nest temperatures by iterating the steps described earlier. Finally, we
considered three plausible phenology scenarios: (1) no shift in nesting
phenology, or (2) nesting dates will shift either 6.86 days earlier (here-
after referred to as the “mean” shift, +SD=4.23, n=16; Table S6) or (3)
18.85 days earlier (hereafter referred to as the “maximum” shift, found
in Mazaris et al., 2008) for every 1°C rise in sea surface temperature
at nesting sites. We calculated the mean and maximum shifts based
on an extensive search of previous studies that reported a significant
negative relationship between nesting dates and seawater tempera-
ture in sea turtles (Table S6). We did not consider non-significant or
positive relationships between the proxy for nesting phenology and
the environmental cue (i.e., a delay of nesting dates with increas-
ing temperatures instead of a shift earlier as assumed in the present

study). Based on these relationships and the expected regional anom-
alies in sea surface temperature under the SSP2-4.5 warming scenario,
we estimated the expected number of days shifted in the future at our
study sites (Table S1) and forecast our seasonal indicators of incuba-
tion temperature, hatching success, and sex ratio accordingly. When
considering if sites would remain within current rates we considered
conditions within a 2.5% of the present-day values for hatching suc-
cess and sex ratio shift (i.e., difference between 25th percentile of cur-
rent and median of future <2.5% reduction) and within 0.5°C buffer
for incubating temperature (i.e., difference between median of future
and 75th percentile of current <0.5°C). To complement this analysis,
we also calculated earlier and later phenological shifts that would be
required in the future to stay within current conditions. To do so, we
shifted nesting seasons backward (from -1 to -365 days) and forward
(from +1 to +365 days) and we retained the minimum number of days
earlier or later when the following conditions are met for each indi-
cator: (1) median incubation temperature index <75th percentile of
current indices, (2) median hatching success index 225th of current
indices, and (3) median sex ratio (male proportion) index 225th per-

centile of current indices.

2.8 | Sensitivity analysis and fit quality

As sufficient data were not available specifically for each RMU, we
fitted thermal tolerance curves and sex ratio thermal reaction norms
at the species level (i.e., pooling all available data, individually for each
species) to benefit from the existent extensive literature data (Tables S2
and S4). This approach allowed us to predict hatching success and sex
ratio for sites where data were unavailable or too scarce at the RMU
level (i.e., lack of data at low or high temperatures, Table S1). For our
sensitivity analysis, we compared our predicted hatching success and
sex ratio seasonal indices using either species-wide or RMU-wide
data when available for both hatching success and sex ratio laboratory
data. This allowed us to compare the outputs for loggerheads from the
“Atlantic, Northwest” RMU (2/6 loggerhead sites; 1/4 RMUs), hawks-
bills from the “Atlantic, Western Caribbean/USA” RMU (4/7 hawksbill
sites; 1/4 RMUs), and olive ridleys from the “Pacific, East” RMU (2/3
olive ridley sites; 1/2 RMUs), but we could not compare the outputs
for green turtles (eight green turtle sites; five RMUs) because there
were no data available for any of the RMUs (thermal tolerance curves
and sex ratio thermal reaction norms are presented in Figure S1 and
details on sites and RMUs can be found in Table S1). We evaluated the
robustness of our predictions by comparing predicted daily mean nest
temperatures with recorded ones. We calculated the R? coefficient of

determination as a measure of fit quality.

3 | RESULTS

Under a “middle of the road” warming scenario (SSP2-4.5), the air
temperature will increase on average by 1.5-3°C, and local sea
surface temperature will increase by 1.4-2.3°C by 2100 across our
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study sites, resulting in a 0.58-4.17°C increase in sand temperatures
(Table S1). According to the maximum expected phenological shift
(18.85days earlier for every 1°C rise in local sea surface tempera-
ture), nesting seasons could shift from 26 to 43 days earlier on aver-
age by 2100 at our study sites (=24, Table S1).

Currently (2007-2020), the median incubation temperature
at our study sites is 30.1°C (25th-75th percentiles=29.1-30.8°C),
ranging from 26.1 to 32.1°C (Cc 26.1-32.1°C, Cm 28.8-32.1°C, Ei
28.5-31.6°C, Lo 30.3-30.7°C; Figure 2; Figure S3). Under a “middle
of the road” scenario (2059-2100), the median incubation tempera-
ture will rise to 31.7°C (25th-75th=30.7-32.8°C), ranging from 28
to 35.7°C (Cc 28-35.7°C, Cm 29.9-34.4°C, Ei 30.3-33.7°C, Lo 32.3-
33.1°C). With a maximum expected shift in phenology, the median
decreases to 31°C (25th-75th=30.1-32.5°C), ranging from 26.6 to
34.2°C (Cc 26.6-33.9°C, Cm 29.7-33.6°C, Ei 28.8-33.8°C, Lo 31.9-
34.2°C; Figure 2). With a maximum shift in phenology only seven
sites would be able to maintain current incubation temperature or
lower. To keep up with present-day incubation temperature the re-
quired shifts backward, for an earlier nesting, ranged from -20 to
-191 days (Figure S3; Table S7), whereas the required shifts forward,
for a later nesting, ranged from +54 to +180days. To note for half of
the sites no matter the shift the median temperature will always be
warmer than the 75th percentile of current ranges. The relationship
between nesting dates and SSTs (i.e., the phenological rates) that
would allow the required phenological shifts to be achieved are pre-
sented in Table S7.

Currently, the median hatching success rate at our study sites is
80.1% (25th-75th=74.3%-82.7%), ranging from 53.5% to 84.5% (Cc
76.1%-84.5%, Cm 73.2%-82.6%, Ei 65.7%-84%, Lo 53.5%-68.9%;
Figure 3; Figure S4). Under a “middle of the road” scenario, hatching
success rates will drop to 67.4% (25th-75th=46.3%-78.2%), ranging
from 1% to 84.5% (Cc 1%-84.5%, Cm 50.4%-81%, Ei 42.6%-75.2%,
Lo 26.5%-57.5%), and with the maximum expected shift in phenol-
ogy hatching success rates increases to 69.1% (25th-75th=50.8%-
79.9%), ranging from 15.3% to 84.5% (Cc 27.5%-84.5%, Cm
59.1%-81.3%, Ei 41.1%-83.1%, Lo 15.3%-58.2%), with 10 of the 24
nesting sites being able to maintain similar hatching success rates to
current values (Figure S4; Table S8). To keep current hatching suc-
cess rates, the required shifts backward for an earlier nesting ranged
from -1 to -172days (Figure S4; Table S7), whereas the required
shifts forward for a later nesting ranged from +1 to +252 days. With
half of the sites being unable to maintain current hatching success
rates no matter the shift undertaken. The relationship between nest-
ing dates and SSTs (i.e., the phenological rates) that would allow the
required phenological shifts to be achieved is presented in Table S7.

Currently 6 of the 24 nesting sites produce more than 90% of
female hatchlings and 6 of the 24 sites produce at least 50% male
hatchlings (Figure 4; Figure S5). We predicted that under a “mid-
dle of the road” scenario, 16 of the 24 nesting sites will produce
clutches comprising more than 90% female hatchlings, with only one
site (Lepidochelys olivacea in las Cabras, Mexico) producing clutches
with more than 50% male hatchlings. However, with the maximum
expected phenological shifts, the number of sites producing more

ST w1

than 90% of females will reduce to 11, and three sites would produce
more than 50% of males. Overall, with the maximum expected phe-
nological shift, half of the sites will be able to maintain current sex
ratios (Figure S5; Table S8) of which seven are expected to produce
more than 25% males (loggerheads in Wassaw Island and Dalyan
Turtle beach, greens in Akyatan and Alagadi Turtle beaches, hawks-
bills in Fuwairit, and olive ridleys in Rushikulya and Las Cabras). The
required shifts backward to keep current male proportions ranged
from -1 to -149days (Figure S5; Table S7), whereas the required
shifts forward ranged from +1 to +160days. With eight sites being
unable to keep current sex ratio no matter the shift undertaken.
The relationship between nesting dates and SSTs (i.e., the pheno-
logical rates) that would allow the required phenological shifts to be

achieved is presented in Table S7.

3.1 | Model robustness

Overall, there is good agreement between predicted and recorded
daily incubation temperatures with a R? of .71 (Figure 5) that ranges
from .2 to .91 when temperatures are compared individually for each
site (Figure Sé). Our sensitivity analysis shows that seasonal indica-
tors of hatching success can be different for hawksbills (i.e., hatching
success always higher under the warming scenario considered here
when using data at the species level) when using either species-wide
or RMU-wide laboratory data to adjust the model for thermal toler-
ances (Figure S7). On the other hand, we did not detect substantial
differences for loggerheads and olive ridleys, for both indicators of
hatching success and sex ratio.

4 | DISCUSSION

The maximum expected shift in nesting phenology will allow for
some sites to maintain similar incubation temperatures (n=7), hatch-
ing success (n=10), and sex ratio (n=12) to current values (2007-
2020). However, for half of the sites no matter the shift in phenology
current rates of incubation temperature and hatching success will
not be able to be maintained, with eight sites being unable to keep
current male production no matter the shift undertaken. These re-
sults align with similar studies which found variability in the ability of
phenological shifts to maintain current temperature levels and con-
sequently productivity (Almpanidou et al., 2018; Laloé & Hays, 2023;
Monsinjon, Wyneken, et al., 2019), with nesting sites further from
the equator (>30° latitude) showing to have the greatest capacity
to buffer impacts of predicted increases in nest temperatures (this
study and Laloé & Hays, 2023). The inability for nesting phenology
to counteract predicted changes in temperature and productivity is
of concern.

Several studies, including this one, have predicted a reduction
in hatchling production as temperatures increase, which would im-
pact population growth and stability (Laloé et al., 2017; Montero
et al., 2019; Montero, Ceriani, et al., 2018; Santidrian Tomillo
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et al., 2015). Furthermore, even though sea turtle populations are
typically female bias (Hays et al., 2014), greater production of female
hatchlings in relation to current rates (median female proportion

FIGURE 2 Current (2007-2020)
absolute mean incubation temperature,
and future (2059-2100) incubation
temperature across the whole incubation
period under a middle of the road scenario
(SSP5-48.5) with and without an earlier
phenological shift (26-43 days) for (a)
loggerhead turtles (Caretta caretta),

(b) green turtles (Chelonia mydas), (c)
hawksbill turtles (Eretmochelys imbricata),
(d) olive ridley (Lepidochelys olivacea). AKY,
Akyatan beach, Turkiye; ALA, Alagadi
Beach, Cyprus; BAJ, Bahia de Jiquilisco, El
Salvador; BHN, Bhanga Nek, South Africa;
BIA, Bijagds Archipelago, Guinea-Bissau;
BOR, Boca Raton, Florida, USA; CAB,
Cabuyal, Costa Rica; CAS, Las Cabras,
Mexico; CEL, Celestun, Mexico; CUY, El
Cuyo, Mexico; DAT, Dalyan Turtle Beach,
Tarkiye; FUW, Fuwairit, Qatar; MAJ,
Majahuas, Mexico; MIN, Minas, Brazil;
PRF, Praia do Forte, Brazil; PRL, Praia do
Ledo, Brazil; RIC, Rio Cafa, Panama; RIJ,
Rio de Janeiro, Brazil; RUS, Rushikulya,
India; TET, Tetiaroa, France; TOR,
Tortuguero, Costa Rica; WAI, Wassaw
Island, USA.

across our study sites between 2007 and 2020=70%) may ulti-
mately result in unbalanced sex ratios of breeding adults (Schwanz
et al., 2010), which might alter reproductive dynamics, reducing
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FIGURE 3 Current (2007-2020), and
future (2059-2100) hatching success
projections under a middle of the road
scenario (SSP2-4.5) with and without an
earlier phenological shift (26-43days) for
(a) loggerhead turtles (Caretta caretta),

(b) green turtles (Chelonia mydas), (c)
hawksbill turtles (Eretmochelys imbricata),
and (d) olive ridley (Lepidochelys olivacea).
Full charts indicating 100% hatching
success AKY, Akyatan beach, Tirkiye;
ALA, Alagadi Beach, Cyprus; BAJ,

Bahia de Jiquilisco, El Salvador; BHN,
Bhanga Nek, South Africa; BIA, Bijagos
Archipelago, Guinea-Bissau; BOR, Boca
Raton, Florida, USA; CAB, Cabuyal, Costa
Rica; CAS, Las Cabras, Mexico; CEL,
Celestun, Mexico; CUY, El Cuyo, Mexico;
DAT, Dalyan Turtle Beach, Turkiye; FUW,
Fuwairit, Qatar; MAJ, Majahuas, Mexico;
MIN, Minas, Brazil; PRF, Praia do Forte,
Brazil; PRL, Praia do Ledo, Brazil; RIC, Rio
Cafa, Panama; R1J, Rio de Janeiro, Brazil;
RUS, Rushikulya, India; TET, Tetiaroa,
France; TOR, Tortuguero, Costa Rica;
WAI, Wassaw Island, USA.

the incidence of multiple paternity and fertilization rates, as well
as resulting in loss of genetic variation (Booth et al., 2021; Fuller
et al., 2013; Hays et al., 2023; Manning et al.,,
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of populations may lead to demographic collapses (Mitchell &
Janzen, 2010), although some evidence suggests that a shorter pe-
riod between breeding bouts in males and promiscuous breeding
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behavior may help balance operational sex ratios in warmer climates
(Hays et al., 2023). The long-term consequences of skewed primary
and adult sex ratios on population dynamics and the proportion of
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FIGURE 4 Current (2007-2020), and
future (2059-2100) projections of female
hatching production under a middle of
the road scenario (SSP2-4.5) with and
without an earlier phenological shift
(26-43days) for (a) loggerhead turtles
(Caretta caretta), (b) green turtles (Chelonia
mydas), (c) hawksbill turtles (Eretmochelys
imbricata), and (d) olive ridley (Lepidochelys
olivacea). Full charts indicate 100%
female production. AKY, Akyatan beach,
Turkiye; ALA, Alagadi Beach, Cyprus;

BAJ, Bahia de Jiquilisco, El Salvador; BHN,
Bhanga Nek, South Africa; BIA, Bijagos
Archipelago, Guinea-Bissau; BOR, Boca
Raton, Florida, USA; CAB, Cabuyal, Costa
Rica; CAS, Las Cabras, Mexico; CEL,
Celestun, Mexico; CUY, El Cuyo, Mexico;
DAT, Dalyan Turtle Beach, Tirkiye;

FUW, Fuwairit, Qatar; MAJ, Majahuas,
Mexico; MIN, Minas, Brazil; PRF, Praia

do Forte, Brazil; PRL, Praia do Ledo,
Brazil; RIC, Rio Cafia, Panama; RIJ, Rio

de Janeiro, Brazil; RUS, Rushikulya, India;
TET, Tetiaroa, France; TOR, Tortuguero,
Costa Rica; WAI, Wassaw Island, USA. To
note estimation is not directly obtained
from Figure 2, but rather derived from
temperatures during the TSP.

males required to sustain populations need to be fully understood
for more robust assessments of the impacts of climate change on
sea turtles (Boyle et al., 2014, 2016; Heppell et al., 2022). Similarly,

85U8017 SUOWIWOD aAIEe.1D 8|qeat|dde sy Aq peusenob ae sopie YO ‘8sn o sa|n. Jo} Arig18uluQO 8|1\ UO (SUOIIIPUOD-PUB-SLULBI/LL0D A3 | 1M Akelq 1 BUl|U//Sdny) SUONIPUOD pue swie | 8y 8eS *[£20z/0T/TE] uo Akeiqiauliuo A|IM ‘T669T GOB/TTTT 0T/I0p/W0d" A8 M Ae.q 1 uljuoy/:sdny wouy pepeojumoq ‘0 ‘9872S9ET



FUENTES ET AL.

Predicted daily mean incubation temperature (°C)

T T T T T T T
15 20 25 30 35 40 45

Observed daily mean incubation temperature (°C)

FIGURE 5 Predicted versus observed daily mean incubation

temperatures (all study sites pooled together). The gray dashed

line is the line of equality, and the red line shows the orthogonal
regression.

for studies that aim to predict future hatchling production, such as
this one, lack of data on the relationship between constant tem-
peratures and hatching success remains problematic as well as lack
of knowledge of how to integrate varying temperatures into con-
stant equivalent temperatures and a lack of understanding on met-
abolic heating and its contribution to hatching success (Gammon
et al., 2020, 2021). Such data gaps hindered our ability to include
leatherback (Dermochelys coriacea) and flatback (Natator depressus)
turtles in our assessment. For these species, we lack hatching suc-
cess data below lower and above upper lethal temperatures (i.e., ~25
and ~35°C, respectively, Howard et al., 2014) to properly estimate
thermal tolerance limits from laboratory experiments although see
Gammon et al. (2021).

It is also important to consider that our study focuses on tem-
perature-driven hatching success whereas other environmental
factors, such as precipitation and moisture have also been found
to influence hatching success (Montero, Marcovaldi, et al., 2018;
Rafferty et al.,, 2017). For instance, embryos can die from suffo-
cation if the nest is flooded from heavy rainfall for an extended
period or from desiccation in the opposite case. Moreover, precip-
itation can cause incubation temperatures to drop via direct cool-
ing or evaporation (Lolavar & Wyneken, 2021; Tezak et al., 2018),
which has resulted in the suggestion that nest watering could po-
tentially be used as management strategy to reduce heat-induced
egg/hatchling mortality and to manipulate hatchling sex ratios (e.g.,
Gatto et al., 2023; Hill et al., 2015; Jourdan & Fuentes, 2015; Smith
et al., 2021). However, human-assisted cooling of nests comes with
a series of costs and benefits. Costs include the persistent need of
human resources if temperatures continue to increase and a poten-
tial slowdown of natural selection via the retention of deleterious
alleles. Benefits include a demographical boost if rescued embryos
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make it to adulthood and reproduce as well as the maintenance of
appropriate genetic mixing if primary sex ratios translate into an
optimal balance between reproductive males and females (Patricio
et al., 2021). Nevertheless, if managers decide to manipulate the
incubation of eggs, it is crucial to evaluate the consequences and
define a strategy that requires the least human resources. Based on
controlled incubation experiments, Porter et al. (2021) mimicked the
effect of heavy rainfall by dropping incubation temperatures for 3
or 7days during the thermosensitive period for sex determination
(TSP). For eggs incubating at constant, female-producing tempera-
tures, the results suggest that short temperature drops below the
pivotal temperature can be sufficient to trigger the development of
males and that the sensitivity to these drops throughout the TSP
varies between green and loggerhead turtles. As discussed by the
authors, this can be useful to target when to cool down the nests in
natural conditions. A potential research avenue would be to refine
the results presented in Patricio et al. (2021) by determining what
would be the smallest drop in both temperature difference and du-
ration sufficient to reach a specific proportion of males at any given
temperature throughout incubation.

Our sensitivity analysis suggests that hatching success predic-
tions for hawksbill turtles can differ when using data at the RMU
level when compared to the species level, especially under the “mid-
dle of the road” (SSP2-4.5) warming scenario (Figure S7). This likely
reflects a lack of data at the RMU level for this species. Although we
did not detect substantial differences for olive ridley and loggerhead
turtles, it is recommended to use hatching success and sex ratio data
at the RMU level to account for local adaptation (or maladaptation)
in thermal tolerances and pivotal temperatures. We encourage fur-
ther research to obtain such data to refine the results presented
here and extend our assessment of adaptive capacity to other sites
and species. Furthermore, other limitations must also be taken into
consideration when interpreting our results. First, we forecast fu-
ture incubation temperatures based on a correlative model (i.e., via
generalized linear models) whereas a mechanistic one (i.e., based on
thermodynamics and biophysics principles) would be more appropri-
ate (Bentley et al., 2020). We found an overall good agreement be-
tween incubation temperature predictions and observations, except
for some sites for which high temperatures are largely underesti-
mated (Figure Sé). This is problematic when projecting warming im-
pacts as we might underestimate exposure to female-producing and
lethal temperatures. On the other hand, a mechanistic microclimate
model (e.g., NicheMapR; Kearney & Porter, 2017) requires extensive
information on sand physical properties, beach topography, vege-
tation, and local weather, which makes it difficult to apply exten-
sively and globally (Fuentes & Porter, 2013). Second, we projected
hatching success solely based on temperature, but future studies
must integrate the combined effect of other climatic variables such
as temperature and humidity, and consider uncertainties related to
climate-driven changes in these variables. Third, we predicted clutch
sex ratios using a recent, more sophisticated approach, namely the
thermal reaction norm for sexualization (Monsinjon et al., 2022).
However, this method requires extensive data on hatchling sex
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ratios under fluctuating temperature regimes and thus was applied
so far only for loggerhead turtles nesting in Florida. Further research
must be undertaken to investigate potential variations among spe-
cies and populations in the timing of the TSP and the sensitivity of
sexualization. Finally, we assumed that earlier phenological shifts are
driven by temperature at nesting sites, in which case turtles would
be waiting for optimal conditions for nesting after their arrival,
with higher temperatures speeding up egg maturation (Monsinjon,
Lopez-Mendilaharsu, et al., 2019; Pike, 2009; Schofield et al., 2009).
However, sea turtle nesting phenology is yet to be fully understood
as other studies suggest that the environmental cue turtles respond
to might be sensed before their departure from foraging areas
(Mazaris et al., 2009; Monsinjon, Lopez-Mendilaharsu, et al., 2019).
We did not investigate this because the location of foraging areas
connected to our nesting sites was unknown for most of the sites
considered here. In addition, it is sometimes unclear whether other
factors are involved (e.g., demography) in observed phenologi-
cal shifts (Monsinjon, Lopez-Mendilaharsu, et al., 2019; Robinson
et al., 2014), which makes it difficult to disentangle the effect of tem-
perature. We encourage further studies to finetune the calculation
of expected phenological shifts, specifically for each nesting popula-
tion, by considering multiple factors (e.g., temperature, demography,
migratory connectivity, and foraging habitat productivity).

Even though some work is still necessary to improve the spatio-
temporal scale of our results, and that some improvements can be
potentially made with our modeling approach our study provides an-
other step toward a multi-species evaluation of climate change im-
pacts on sea turtles' embryonic stage and sets the baseline for future
research on this topic. For example, even though we only consid-
ered the influence of temperature on hatchling success, our results
allow us to identify which sites might be more vulnerable/resilient
to changes in temperature and that will suffer from warming-related
shortage of hatchlings (i.e., the sites potentially at risk from rising
temperatures only), which is particularly relevant for ectothermic
species like sea turtles. Ultimately, the broad geographic span of our
study sites, and consideration of four of the seven species of sea
turtles, indicate that the impacts of climate change and the ability of
phenological shifts to counteract potential feminization of sea tur-
tles and decreases in hatching success will vary spatially and among
species with some populations being unable to take advantage of
phenological shifts, as previously indicated by similar studies (see
Almpanidou et al., 2018; Laloé & Hays, 2023; Monsinjon, Wyneken,
et al., 2019). Having said this, we identified five sites (Wassaw Island,
USA, Daylan beach, and Akyatan beach in turkey, Alagadi Beach in
Cyprus and Fuwairit, Qatar) in which a maximum phenological shift
will result in more males being produced than currently without a
reduction in hatching success as observed at Las Cabras, Mexico.
Ultimately, the impact of climate change on sea turtles and their re-
silience to it will depend on several factors such as population size,
genetic diversity, non-climate-related threats, foraging plasticity,
the availability of climatically suitable habitat, and their capacity to
adapt (Fuentes et al., 2013, 2020; Patricio et al., 2021). Here, we
only considered the ability of sea turtles to adapt through shifts in

nesting phenology, which alone will likely not be sufficient to coun-
teract the projected impacts of climate change on sea turtle repro-
duction (Almpanidou et al., 2018; Monsinjon, Wyneken, et al., 2019).
It might be that several other processes need to take place for sea
turtles to be able to adapt to climate change. Other behavioral adap-
tations may include changes in the spatial distribution of sea turtle
nesting sites, as well as changes in their nest-site choice on nest-
ing beaches (Cardona et al., 2022; Girard et al., 2021; Hochscheid
et al., 2022; Mancino et al., 2022; Tomillo et al., 2022). Since spatial
and temporal adaptations may occur simultaneously (Chuine, 2010),
future studies should develop a multi-faceted framework to explore
the adaptive potential of sea turtles in response to contemporary
climate change. It is also important to consider the potential implica-
tions of adaptations and, to the extent possible, account for known
non-climate-related threats which will occur concurrently and po-
tentially synergistically so that an adaptive management approach
can be undertaken in impact assessments (Fuentes et al., 2016).
Shifts in nesting phenology may result in changes in the exposure
of sea turtles to threats that have a seasonal nature (e.g., specific fisher-
ies, recreational activities). Similarly, shifts in nesting range may result
in turtles being more exposed to other threats such as coastal devel-
opment and sea level rise (Fuentes et al., 2020). Clearly, there are sev-
eral interlinked factors affecting the ability of sea turtles to adapt and
survive projected climate changes, highlighting the need for a better
understanding of the cumulative and interacting nature of these fac-
tors in conjunction with animal behavior. While we address the current
knowledge gaps, which hinder a more comprehensive understanding
of the impacts of climate change on sea turtles (Patricio et al., 2021),
there remains a need to enhance sea turtle resilience to climate change
by mitigating other threats that they currently face (Brander, 2008;
Fuentes et al., 2012). Such an approach will give vulnerable and de-

pleted populations greater resilience to resist these disturbances.
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